Index | Archives | Atom Feed | RSS Feed

Second Round of systemd.conf 2015 Sponsors

Second Round of systemd.conf 2015 Sponsors

We are happy to announce the second round of systemd.conf 2015 sponsors! In addition to those from the first announcement, we have:

Our second Gold sponsor is Red Hat!

What began as a better way to build software—openness, transparency, collaboration—soon shifted the balance of power in an entire industry. The revolution of choice continues. Today Red Hat® is the world's leading provider of open source solutions, using a community-powered approach to provide reliable and high-performing cloud, virtualization, storage, Linux®, and middleware technologies.

A Bronze sponsor is Samsung:

From the beginning we have established a very fast pace and are currently one of the biggest and fastest growing modern-technology R&D centers in East-Central Europe. We have started with designing subsystems for digital satellite television, however, we have quickly expanded the scope of our interest. Currently, it includes advanced systems of digital television, platform convergence, mobile systems, smart solutions, and enterprise solutions. Also a vital role in our activity plays the quality and certification center, which controls the conformity of Samsung Electronics products with the highest standards of quality and reliability.

A Bronze sponsor is travelping:

Travelping is passionate about networks, communications and devices. We empower our customers to deploy and operate networks using our state of the art products, solutions and services. Our products and solutions are based on our industry proven physical and virtual appliance platforms. These purpose built platforms ensure best in class performance, scalability and reliability combined with consistent end to end management capabilities. To build this products, Travelping has developed a own embedded, cross platform Linux distribution called CAROS.io which incorporates the systemd service manager and tools.

A Bronze sponsor is Collabora:

Collabora has over 10 years of experience working with top tier OEMs & silicon manufacturers worldwide to develop products based on Open Source software. Through the use of Open Source technologies and methodologies, Collabora helps clients in multiple market segments gain faster time to market and save millions of dollars in licensing and maintenance costs. Collabora has already brought to market several products relying on systemd extensively.

A Bronze sponsor is Endocode:

Endocode AG. An employee-owned, software engineering company from Berlin. Open Source is our heart and soul.

A Bronze sponsor is the Linux Foundation:

The Linux Foundation advances the growth of Linux and offers its collaborative principles and practices to any endeavor.

We are Cooperating with LinuxTag e.V. on the organization:

LinuxTag is Europe's leading organizer of Linux and Open Source events. Born of the community and in business for 20 years, we organize LinuxTag, an annual conference and exhibition attracting thousands of visitors. We also participate and cooperate in organizing workshops, tutorials, seminars, and other events together with and for the Open Source community. Selected events include non-profit workshops, the German Kernel Summit at FrOSCon, participation in the Open Tech Summit, and others. We take care of the organizational framework of systemd.conf 2015. LinuxTag e.V. is a non-profit organization and welcomes donations of ideas and workforce.

A Media Partner is Golem:

Golem.de is an up to date online-publication intended for professional computer users. It provides technology insights of the IT and telecommunications industry. Golem.de offers profound and up to date information on significant and trending topics. Online- and IT-Professionals, marketing managers, purchasers, and readers inspired by technology receive substantial information on product, market and branding potentials through tests, interviews und market analysis.

We'd like to thank our sponsors for their support! Without sponsors our conference would not be possible!

The Conference s SOLD OUT since a few weeks. We no longer accept registrations, nor paper submissions.

For further details about systemd.conf consult the conference website.

See the the first round of sponsor announcements!

See you in Berlin!


systemd.conf close to being sold out!

Only 14 tickets still available!

systemd.conf 2015 is close to being sold out, there are only 14 tickets left now. If you haven't bought your ticket yet, now is the time to do it, because otherwise it will be too late and all tickets will be gone!

Why attend? At this conference you'll get to meet everybody who is involved with the systemd project and learn what they are working on, and where the project will go next. You'll hear from major users and projects working with systemd. It's the primary forum where you can make yourself heard and get first hand access to everybody who's working on the future of the core Linux userspace!

To get an idea about the schedule, please consult our preliminary schedule.

In order to register for the conference, please visit the registration page.

We are still looking for sponsors. If you'd like to join the ranks of systemd.conf 2015 sponsors, please have a look at our Becoming a Sponsor page!

For further details about systemd.conf consult the conference website.


Preliminary systemd.conf 2015 Schedule

A Preliminary systemd.conf 2015 Schedule is Now Online!

We are happy to announce that an initial, preliminary version of the systemd.conf 2015 schedule is now online! (Please ignore that some rows in the schedule link the same session twice on that page. That's a bug in the web site CMS we are working on to fix.)

We got an overwhelming number of high-quality submissions during the CfP! Because there were so many good talks we really wanted to accept, we decided to do two full days of talks now, leaving one more day for the hackfest and BoFs. We also shortened many of the slots, to make room for more. All in all we now have a schedule packed with fantastic presentations!

The areas covered range from containers, to system provisioning, stateless systems, distributed init systems, the kdbus IPC, control groups, systemd on the desktop, systemd in embedded devices, configuration management and systemd, and systemd in downstream distributions.

We'd like to thank everybody who submited a presentation proposal!

Also, don't forget to register for the conference! Only a limited number of registrations are available due to space constraints! Register here!.

We are still looking for sponsors. If you'd like to join the ranks of systemd.conf 2015 sponsors, please have a look at our Becoming a Sponsor page!

For further details about systemd.conf consult the conference website.


systemd.conf 2015 CfP REMINDER

LAST REMINDER! systemd.conf 2015 Call for Presentations ends August 31st!

Here's the last reminder that the systemd.conf 2015 CfP ends on August 31st 11:59:59pm Central European Time (that's monday next week)! Make sure to submit your proposals until then!

Please submit your proposals on our website!

And don't forget to register for the conference! Only a limited number of registrations are available due to space constraints! Register here!.

For further details about systemd.conf consult the conference website.


First Round of systemd.conf 2015 Sponsors

First Round of systemd.conf 2015 Sponsors

We are happy to announce the first round of systemd.conf 2015 sponsors!

Our first Gold sponsor is CoreOS!

CoreOS develops software for modern infrastructure that delivers a consistent operating environment for distributed applications. CoreOS's commercial offering, Tectonic, is an enterprise-ready platform that combines Kubernetes and the CoreOS stack to run Linux containers. In addition CoreOS is the creator and maintainer of open source projects such as CoreOS Linux, etcd, fleet, flannel and rkt. The strategies and architectures that influence CoreOS allow companies like Google, Facebook and Twitter to run their services at scale with high resilience. Learn more about CoreOS here https://coreos.com/, Tectonic here, https://tectonic.com/ or follow CoreOS on Twitter @coreoslinux.

A Silver sponsor is Codethink:

Codethink is a software services consultancy, focusing on engineering reliable systems for long-term deployment with open source technologies.

A Bronze sponsor is Pantheon:

Pantheon is a platform for professional website development, testing, and deployment. Supporting Drupal and WordPress, Pantheon runs over 100,000 websites for the world's top brands, universities, and media organizations on top of over a million containers.

A Bronze sponsor is Pengutronix:

Pengutronix provides consulting, training and development services for Embedded Linux to customers from the industry. The Kernel Team ports Linux to customer hardware and has more than 3100 patches in the official mainline kernel. In addition to lowlevel ports, the Pengutronix Application Team is responsible for board support packages based on PTXdist or Yocto and deals with system integration (this is where systemd plays an important role). The Graphics Team works on accelerated multimedia tasks, based on the Linux kernel, GStreamer, Qt and web technologies.

We'd like to thank our sponsors for their support! Without sponsors our conference would not be possible!

We'll shortly announce our second round of sponsors, please stay tuned!

If you'd like to join the ranks of systemd.conf 2015 sponsors, please have a look at our Becoming a Sponsor page!

Reminder! The systemd.conf 2015 Call for Presentations ends on monday, August 31st! Please make sure to submit your proposals on the CfP page until then!

Also, don't forget to register for the conference! Only a limited number of registrations are available due to space constraints! Register here!.

For further details about systemd.conf consult the conference website.


systemd.conf 2015 Call for Presentations

REMINDER! systemd.conf 2015 Call for Presentations ends August 31st!

We'd like to remind you that the systemd.conf 2015 Call for Presentations ends on August 31st! Please submit your presentation proposals before that data on our website.

We are specifically interested in submissions from projects and vendors building today's and tomorrow's products, services and devices with systemd. We'd like to learn about the problems you encounter and the benefits you see! Hence, if you work for a company using systemd, please submit a presentation!

We are also specifically interested in submissions from downstream distribution maintainers of systemd! If you develop or maintain systemd packages in a distribution, please submit a presentation reporting about the state, future and the problems of systemd packaging so that we can improve downstream collaboration!

And of course, all talks regarding systemd usage in containers, in the cloud, on servers, on the desktop, in mobile and in embedded are highly welcome! Talks about systemd networking and kdbus IPC are very welcome too!

Please submit your presentations until August 31st!

And don't forget to register for the conference! Only a limited number of registrations are available due to space constraints! Register here!.

Also, limited travel and entry fee sponsorship is available for community contributors. Please contact us for details!

For further details about the CfP consult the CfP page.

For further details about systemd.conf consult the conference website.


Announcing systemd.conf 2015

Announcing systemd.conf 2015

We are happy to announce the inaugural systemd.conf 2015 conference of the systemd project.

The conference takes place November 5th-7th, 2015 in Berlin, Germany.

Only a limited number of tickets are available, hence make sure to sign up quickly.

For further details consult the conference website.


The new sd-bus API of systemd

With the new v221 release of systemd we are declaring the sd-bus API shipped with systemd stable. sd-bus is our minimal D-Bus IPC C library, supporting as back-ends both classic socket-based D-Bus and kdbus. The library has been been part of systemd for a while, but has only been used internally, since we wanted to have the liberty to still make API changes without affecting external consumers of the library. However, now we are confident to commit to a stable API for it, starting with v221.

In this blog story I hope to provide you with a quick overview on sd-bus, a short reiteration on D-Bus and its concepts, as well as a few simple examples how to write D-Bus clients and services with it.

What is D-Bus again?

Let's start with a quick reminder what D-Bus actually is: it's a powerful, generic IPC system for Linux and other operating systems. It knows concepts like buses, objects, interfaces, methods, signals, properties. It provides you with fine-grained access control, a rich type system, discoverability, introspection, monitoring, reliable multicasting, service activation, file descriptor passing, and more. There are bindings for numerous programming languages that are used on Linux.

D-Bus has been a core component of Linux systems since more than 10 years. It is certainly the most widely established high-level local IPC system on Linux. Since systemd's inception it has been the IPC system it exposes its interfaces on. And even before systemd, it was the IPC system Upstart used to expose its interfaces. It is used by GNOME, by KDE and by a variety of system components.

D-Bus refers to both a specification, and a reference implementation. The reference implementation provides both a bus server component, as well as a client library. While there are multiple other, popular reimplementations of the client library – for both C and other programming languages –, the only commonly used server side is the one from the reference implementation. (However, the kdbus project is working on providing an alternative to this server implementation as a kernel component.)

D-Bus is mostly used as local IPC, on top of AF_UNIX sockets. However, the protocol may be used on top of TCP/IP as well. It does not natively support encryption, hence using D-Bus directly on TCP is usually not a good idea. It is possible to combine D-Bus with a transport like ssh in order to secure it. systemd uses this to make many of its APIs accessible remotely.

A frequently asked question about D-Bus is why it exists at all, given that AF_UNIX sockets and FIFOs already exist on UNIX and have been used for a long time successfully. To answer this question let's make a comparison with popular web technology of today: what AF_UNIX/FIFOs are to D-Bus, TCP is to HTTP/REST. While AF_UNIX sockets/FIFOs only shovel raw bytes between processes, D-Bus defines actual message encoding and adds concepts like method call transactions, an object system, security mechanisms, multicasting and more.

From our 10year+ experience with D-Bus we know today that while there are some areas where we can improve things (and we are working on that, both with kdbus and sd-bus), it generally appears to be a very well designed system, that stood the test of time, aged well and is widely established. Today, if we'd sit down and design a completely new IPC system incorporating all the experience and knowledge we gained with D-Bus, I am sure the result would be very close to what D-Bus already is.

Or in short: D-Bus is great. If you hack on a Linux project and need a local IPC, it should be your first choice. Not only because D-Bus is well designed, but also because there aren't many alternatives that can cover similar functionality.

Where does sd-bus fit in?

Let's discuss why sd-bus exists, how it compares with the other existing C D-Bus libraries and why it might be a library to consider for your project.

For C, there are two established, popular D-Bus libraries: libdbus, as it is shipped in the reference implementation of D-Bus, as well as GDBus, a component of GLib, the low-level tool library of GNOME.

Of the two libdbus is the much older one, as it was written at the time the specification was put together. The library was written with a focus on being portable and to be useful as back-end for higher-level language bindings. Both of these goals required the API to be very generic, resulting in a relatively baroque, hard-to-use API that lacks the bits that make it easy and fun to use from C. It provides the building blocks, but few tools to actually make it straightforward to build a house from them. On the other hand, the library is suitable for most use-cases (for example, it is OOM-safe making it suitable for writing lowest level system software), and is portable to operating systems like Windows or more exotic UNIXes.

GDBus is a much newer implementation. It has been written after considerable experience with using a GLib/GObject wrapper around libdbus. GDBus is implemented from scratch, shares no code with libdbus. Its design differs substantially from libdbus, it contains code generators to make it specifically easy to expose GObject objects on the bus, or talking to D-Bus objects as GObject objects. It translates D-Bus data types to GVariant, which is GLib's powerful data serialization format. If you are used to GLib-style programming then you'll feel right at home, hacking D-Bus services and clients with it is a lot simpler than using libdbus.

With sd-bus we now provide a third implementation, sharing no code with either libdbus or GDBus. For us, the focus was on providing kind of a middle ground between libdbus and GDBus: a low-level C library that actually is fun to work with, that has enough syntactic sugar to make it easy to write clients and services with, but on the other hand is more low-level than GDBus/GLib/GObject/GVariant. To be able to use it in systemd's various system-level components it needed to be OOM-safe and minimal. Another major point we wanted to focus on was supporting a kdbus back-end right from the beginning, in addition to the socket transport of the original D-Bus specification ("dbus1"). In fact, we wanted to design the library closer to kdbus' semantics than to dbus1's, wherever they are different, but still cover both transports nicely. In contrast to libdbus or GDBus portability is not a priority for sd-bus, instead we try to make the best of the Linux platform and expose specific Linux concepts wherever that is beneficial. Finally, performance was also an issue (though a secondary one): neither libdbus nor GDBus will win any speed records. We wanted to improve on performance (throughput and latency) -- but simplicity and correctness are more important to us. We believe the result of our work delivers our goals quite nicely: the library is fun to use, supports kdbus and sockets as back-end, is relatively minimal, and the performance is substantially better than both libdbus and GDBus.

To decide which of the three APIs to use for you C project, here are short guidelines:

  • If you hack on a GLib/GObject project, GDBus is definitely your first choice.

  • If portability to non-Linux kernels -- including Windows, Mac OS and other UNIXes -- is important to you, use either GDBus (which more or less means buying into GLib/GObject) or libdbus (which requires a lot of manual work).

  • Otherwise, sd-bus would be my recommended choice.

(I am not covering C++ specifically here, this is all about plain C only. But do note: if you use Qt, then QtDBus is the D-Bus API of choice, being a wrapper around libdbus.)

Introduction to D-Bus Concepts

To the uninitiated D-Bus usually appears to be a relatively opaque technology. It uses lots of concepts that appear unnecessarily complex and redundant on first sight. But actually, they make a lot of sense. Let's have a look:

  • A bus is where you look for IPC services. There are usually two kinds of buses: a system bus, of which there's exactly one per system, and which is where you'd look for system services; and a user bus, of which there's one per user, and which is where you'd look for user services, like the address book service or the mail program. (Originally, the user bus was actually a session bus -- so that you get multiple of them if you log in many times as the same user --, and on most setups it still is, but we are working on moving things to a true user bus, of which there is only one per user on a system, regardless how many times that user happens to log in.)

  • A service is a program that offers some IPC API on a bus. A service is identified by a name in reverse domain name notation. Thus, the org.freedesktop.NetworkManager service on the system bus is where NetworkManager's APIs are available and org.freedesktop.login1 on the system bus is where systemd-logind's APIs are exposed.

  • A client is a program that makes use of some IPC API on a bus. It talks to a service, monitors it and generally doesn't provide any services on its own. That said, lines are blurry and many services are also clients to other services. Frequently the term peer is used as a generalization to refer to either a service or a client.

  • An object path is an identifier for an object on a specific service. In a way this is comparable to a C pointer, since that's how you generally reference a C object, if you hack object-oriented programs in C. However, C pointers are just memory addresses, and passing memory addresses around to other processes would make little sense, since they of course refer to the address space of the service, the client couldn't make sense of it. Thus, the D-Bus designers came up with the object path concept, which is just a string that looks like a file system path. Example: /org/freedesktop/login1 is the object path of the 'manager' object of the org.freedesktop.login1 service (which, as we remember from above, is still the service systemd-logind exposes). Because object paths are structured like file system paths they can be neatly arranged in a tree, so that you end up with a venerable tree of objects. For example, you'll find all user sessions systemd-logind manages below the /org/freedesktop/login1/session sub-tree, for example called /org/freedesktop/login1/session/_7, /org/freedesktop/login1/session/_55 and so on. How services precisely label their objects and arrange them in a tree is completely up to the developers of the services.

  • Each object that is identified by an object path has one or more interfaces. An interface is a collection of signals, methods, and properties (collectively called members), that belong together. The concept of a D-Bus interface is actually pretty much identical to what you know from programming languages such as Java, which also know an interface concept. Which interfaces an object implements are up the developers of the service. Interface names are in reverse domain name notation, much like service names. (Yes, that's admittedly confusing, in particular since it's pretty common for simpler services to reuse the service name string also as an interface name.) A couple of interfaces are standardized though and you'll find them available on many of the objects offered by the various services. Specifically, those are org.freedesktop.DBus.Introspectable, org.freedesktop.DBus.Peer and org.freedesktop.DBus.Properties.

  • An interface can contain methods. The word "method" is more or less just a fancy word for "function", and is a term used pretty much the same way in object-oriented languages such as Java. The most common interaction between D-Bus peers is that one peer invokes one of these methods on another peer and gets a reply. A D-Bus method takes a couple of parameters, and returns others. The parameters are transmitted in a type-safe way, and the type information is included in the introspection data you can query from each object. Usually, method names (and the other member types) follow a CamelCase syntax. For example, systemd-logind exposes an ActivateSession method on the org.freedesktop.login1.Manager interface that is available on the /org/freedesktop/login1 object of the org.freedesktop.login1 service.

  • A signature describes a set of parameters a function (or signal, property, see below) takes or returns. It's a series of characters that each encode one parameter by its type. The set of types available is pretty powerful. For example, there are simpler types like s for string, or u for 32bit integer, but also complex types such as as for an array of strings or a(sb) for an array of structures consisting of one string and one boolean each. See the D-Bus specification for the full explanation of the type system. The ActivateSession method mentioned above takes a single string as parameter (the parameter signature is hence s), and returns nothing (the return signature is hence the empty string). Of course, the signature can get a lot more complex, see below for more examples.

  • A signal is another member type that the D-Bus object system knows. Much like a method it has a signature. However, they serve different purposes. While in a method call a single client issues a request on a single service, and that service sends back a response to the client, signals are for general notification of peers. Services send them out when they want to tell one or more peers on the bus that something happened or changed. In contrast to method calls and their replies they are hence usually broadcast over a bus. While method calls/replies are used for duplex one-to-one communication, signals are usually used for simplex one-to-many communication (note however that that's not a requirement, they can also be used one-to-one). Example: systemd-logind broadcasts a SessionNew signal from its manager object each time a user logs in, and a SessionRemoved signal every time a user logs out.

  • A property is the third member type that the D-Bus object system knows. It's similar to the property concept known by languages like C#. Properties also have a signature, and are more or less just variables that an object exposes, that can be read or altered by clients. Example: systemd-logind exposes a property Docked of the signature b (a boolean). It reflects whether systemd-logind thinks the system is currently in a docking station of some form (only applies to laptops …).

So much for the various concepts D-Bus knows. Of course, all these new concepts might be overwhelming. Let's look at them from a different perspective. I assume many of the readers have an understanding of today's web technology, specifically HTTP and REST. Let's try to compare the concept of a HTTP request with the concept of a D-Bus method call:

  • A HTTP request you issue on a specific network. It could be the Internet, or it could be your local LAN, or a company VPN. Depending on which network you issue the request on, you'll be able to talk to a different set of servers. This is not unlike the "bus" concept of D-Bus.

  • On the network you then pick a specific HTTP server to talk to. That's roughly comparable to picking a service on a specific bus.

  • On the HTTP server you then ask for a specific URL. The "path" part of the URL (by which I mean everything after the host name of the server, up to the last "/") is pretty similar to a D-Bus object path.

  • The "file" part of the URL (by which I mean everything after the last slash, following the path, as described above), then defines the actual call to make. In D-Bus this could be mapped to an interface and method name.

  • Finally, the parameters of a HTTP call follow the path after the "?", they map to the signature of the D-Bus call.

Of course, comparing an HTTP request to a D-Bus method call is a bit comparing apples and oranges. However, I think it's still useful to get a bit of a feeling of what maps to what.

From the shell

So much about the concepts and the gray theory behind them. Let's make this exciting, let's actually see how this feels on a real system.

Since a while systemd has included a tool busctl that is useful to explore and interact with the D-Bus object system. When invoked without parameters, it will show you a list of all peers connected to the system bus. (Use --user to see the peers of your user bus instead):

$ busctl
NAME                                       PID PROCESS         USER             CONNECTION    UNIT                      SESSION    DESCRIPTION
:1.1                                         1 systemd         root             :1.1          -                         -          -
:1.11                                      705 NetworkManager  root             :1.11         NetworkManager.service    -          -
:1.14                                      744 gdm             root             :1.14         gdm.service               -          -
:1.4                                       708 systemd-logind  root             :1.4          systemd-logind.service    -          -
:1.7200                                  17563 busctl          lennart          :1.7200       session-1.scope           1          -
[…]
org.freedesktop.NetworkManager             705 NetworkManager  root             :1.11         NetworkManager.service    -          -
org.freedesktop.login1                     708 systemd-logind  root             :1.4          systemd-logind.service    -          -
org.freedesktop.systemd1                     1 systemd         root             :1.1          -                         -          -
org.gnome.DisplayManager                   744 gdm             root             :1.14         gdm.service               -          -
[…]

(I have shortened the output a bit, to make keep things brief).

The list begins with a list of all peers currently connected to the bus. They are identified by peer names like ":1.11". These are called unique names in D-Bus nomenclature. Basically, every peer has a unique name, and they are assigned automatically when a peer connects to the bus. They are much like an IP address if you so will. You'll notice that a couple of peers are already connected, including our little busctl tool itself as well as a number of system services. The list then shows all actual services on the bus, identified by their service names (as discussed above; to discern them from the unique names these are also called well-known names). In many ways well-known names are similar to DNS host names, i.e. they are a friendlier way to reference a peer, but on the lower level they just map to an IP address, or in this comparison the unique name. Much like you can connect to a host on the Internet by either its host name or its IP address, you can also connect to a bus peer either by its unique or its well-known name. (Note that each peer can have as many well-known names as it likes, much like an IP address can have multiple host names referring to it).

OK, that's already kinda cool. Try it for yourself, on your local machine (all you need is a recent, systemd-based distribution).

Let's now go the next step. Let's see which objects the org.freedesktop.login1 service actually offers:

$ busctl tree org.freedesktop.login1
└─/org/freedesktop/login1
  ├─/org/freedesktop/login1/seat
  │ ├─/org/freedesktop/login1/seat/seat0
  │ └─/org/freedesktop/login1/seat/self
  ├─/org/freedesktop/login1/session
  │ ├─/org/freedesktop/login1/session/_31
  │ └─/org/freedesktop/login1/session/self
  └─/org/freedesktop/login1/user
    ├─/org/freedesktop/login1/user/_1000
    └─/org/freedesktop/login1/user/self

Pretty, isn't it? What's actually even nicer, and which the output does not show is that there's full command line completion available: as you press TAB the shell will auto-complete the service names for you. It's a real pleasure to explore your D-Bus objects that way!

The output shows some objects that you might recognize from the explanations above. Now, let's go further. Let's see what interfaces, methods, signals and properties one of these objects actually exposes:

$ busctl introspect org.freedesktop.login1 /org/freedesktop/login1/session/_31
NAME                                TYPE      SIGNATURE RESULT/VALUE                             FLAGS
org.freedesktop.DBus.Introspectable interface -         -                                        -
.Introspect                         method    -         s                                        -
org.freedesktop.DBus.Peer           interface -         -                                        -
.GetMachineId                       method    -         s                                        -
.Ping                               method    -         -                                        -
org.freedesktop.DBus.Properties     interface -         -                                        -
.Get                                method    ss        v                                        -
.GetAll                             method    s         a{sv}                                    -
.Set                                method    ssv       -                                        -
.PropertiesChanged                  signal    sa{sv}as  -                                        -
org.freedesktop.login1.Session      interface -         -                                        -
.Activate                           method    -         -                                        -
.Kill                               method    si        -                                        -
.Lock                               method    -         -                                        -
.PauseDeviceComplete                method    uu        -                                        -
.ReleaseControl                     method    -         -                                        -
.ReleaseDevice                      method    uu        -                                        -
.SetIdleHint                        method    b         -                                        -
.TakeControl                        method    b         -                                        -
.TakeDevice                         method    uu        hb                                       -
.Terminate                          method    -         -                                        -
.Unlock                             method    -         -                                        -
.Active                             property  b         true                                     emits-change
.Audit                              property  u         1                                        const
.Class                              property  s         "user"                                   const
.Desktop                            property  s         ""                                       const
.Display                            property  s         ""                                       const
.Id                                 property  s         "1"                                      const
.IdleHint                           property  b         true                                     emits-change
.IdleSinceHint                      property  t         1434494624206001                         emits-change
.IdleSinceHintMonotonic             property  t         0                                        emits-change
.Leader                             property  u         762                                      const
.Name                               property  s         "lennart"                                const
.Remote                             property  b         false                                    const
.RemoteHost                         property  s         ""                                       const
.RemoteUser                         property  s         ""                                       const
.Scope                              property  s         "session-1.scope"                        const
.Seat                               property  (so)      "seat0" "/org/freedesktop/login1/seat... const
.Service                            property  s         "gdm-autologin"                          const
.State                              property  s         "active"                                 -
.TTY                                property  s         "/dev/tty1"                              const
.Timestamp                          property  t         1434494630344367                         const
.TimestampMonotonic                 property  t         34814579                                 const
.Type                               property  s         "x11"                                    const
.User                               property  (uo)      1000 "/org/freedesktop/login1/user/_1... const
.VTNr                               property  u         1                                        const
.Lock                               signal    -         -                                        -
.PauseDevice                        signal    uus       -                                        -
.ResumeDevice                       signal    uuh       -                                        -
.Unlock                             signal    -         -                                        -

As before, the busctl command supports command line completion, hence both the service name and the object path used are easily put together on the shell simply by pressing TAB. The output shows the methods, properties, signals of one of the session objects that are currently made available by systemd-logind. There's a section for each interface the object knows. The second column tells you what kind of member is shown in the line. The third column shows the signature of the member. In case of method calls that's the input parameters, the fourth column shows what is returned. For properties, the fourth column encodes the current value of them.

So far, we just explored. Let's take the next step now: let's become active - let's call a method:

# busctl call org.freedesktop.login1 /org/freedesktop/login1/session/_31 org.freedesktop.login1.Session Lock

I don't think I need to mention this anymore, but anyway: again there's full command line completion available. The third argument is the interface name, the fourth the method name, both can be easily completed by pressing TAB. In this case we picked the Lock method, which activates the screen lock for the specific session. And yupp, the instant I pressed enter on this line my screen lock turned on (this only works on DEs that correctly hook into systemd-logind for this to work. GNOME works fine, and KDE should work too).

The Lock method call we picked is very simple, as it takes no parameters and returns none. Of course, it can get more complicated for some calls. Here's another example, this time using one of systemd's own bus calls, to start an arbitrary system unit:

# busctl call org.freedesktop.systemd1 /org/freedesktop/systemd1 org.freedesktop.systemd1.Manager StartUnit ss "cups.service" "replace"
o "/org/freedesktop/systemd1/job/42684"

This call takes two strings as input parameters, as we denote in the signature string that follows the method name (as usual, command line completion helps you getting this right). Following the signature the next two parameters are simply the two strings to pass. The specified signature string hence indicates what comes next. systemd's StartUnit method call takes the unit name to start as first parameter, and the mode in which to start it as second. The call returned a single object path value. It is encoded the same way as the input parameter: a signature (just o for the object path) followed by the actual value.

Of course, some method call parameters can get a ton more complex, but with busctl it's relatively easy to encode them all. See the man page for details.

busctl knows a number of other operations. For example, you can use it to monitor D-Bus traffic as it happens (including generating a .cap file for use with Wireshark!) or you can set or get specific properties. However, this blog story was supposed to be about sd-bus, not busctl, hence let's cut this short here, and let me direct you to the man page in case you want to know more about the tool.

busctl (like the rest of system) is implemented using the sd-bus API. Thus it exposes many of the features of sd-bus itself. For example, you can use to connect to remote or container buses. It understands both kdbus and classic D-Bus, and more!

sd-bus

But enough! Let's get back on topic, let's talk about sd-bus itself.

The sd-bus set of APIs is mostly contained in the header file sd-bus.h.

Here's a random selection of features of the library, that make it compare well with the other implementations available.

  • Supports both kdbus and dbus1 as back-end.

  • Has high-level support for connecting to remote buses via ssh, and to buses of local OS containers.

  • Powerful credential model, to implement authentication of clients in services. Currently 34 individual fields are supported, from the PID of the client to the cgroup or capability sets.

  • Support for tracking the life-cycle of peers in order to release local objects automatically when all peers referencing them disconnected.

  • The client builds an efficient decision tree to determine which handlers to deliver an incoming bus message to.

  • Automatically translates D-Bus errors into UNIX style errors and back (this is lossy though), to ensure best integration of D-Bus into low-level Linux programs.

  • Powerful but lightweight object model for exposing local objects on the bus. Automatically generates introspection as necessary.

The API is currently not fully documented, but we are working on completing the set of manual pages. For details see all pages starting with sd_bus_.

Invoking a Method, from C, with sd-bus

So much about the library in general. Here's an example for connecting to the bus and issuing a method call:

#include <stdio.h>
#include <stdlib.h>
#include <systemd/sd-bus.h>

int main(int argc, char *argv[]) {
        sd_bus_error error = SD_BUS_ERROR_NULL;
        sd_bus_message *m = NULL;
        sd_bus *bus = NULL;
        const char *path;
        int r;

        /* Connect to the system bus */
        r = sd_bus_open_system(&bus);
        if (r < 0) {
                fprintf(stderr, "Failed to connect to system bus: %s\n", strerror(-r));
                goto finish;
        }

        /* Issue the method call and store the respons message in m */
        r = sd_bus_call_method(bus,
                               "org.freedesktop.systemd1",           /* service to contact */
                               "/org/freedesktop/systemd1",          /* object path */
                               "org.freedesktop.systemd1.Manager",   /* interface name */
                               "StartUnit",                          /* method name */
                               &error,                               /* object to return error in */
                               &m,                                   /* return message on success */
                               "ss",                                 /* input signature */
                               "cups.service",                       /* first argument */
                               "replace");                           /* second argument */
        if (r < 0) {
                fprintf(stderr, "Failed to issue method call: %s\n", error.message);
                goto finish;
        }

        /* Parse the response message */
        r = sd_bus_message_read(m, "o", &path);
        if (r < 0) {
                fprintf(stderr, "Failed to parse response message: %s\n", strerror(-r));
                goto finish;
        }

        printf("Queued service job as %s.\n", path);

finish:
        sd_bus_error_free(&error);
        sd_bus_message_unref(m);
        sd_bus_unref(bus);

        return r < 0 ? EXIT_FAILURE : EXIT_SUCCESS;
}

Save this example as bus-client.c, then build it with:

$ gcc bus-client.c -o bus-client `pkg-config --cflags --libs libsystemd`

This will generate a binary bus-client you can now run. Make sure to run it as root though, since access to the StartUnit method is privileged:

# ./bus-client
Queued service job as /org/freedesktop/systemd1/job/3586.

And that's it already, our first example. It showed how we invoked a method call on the bus. The actual function call of the method is very close to the busctl command line we used before. I hope the code excerpt needs little further explanation. It's supposed to give you a taste how to write D-Bus clients with sd-bus. For more more information please have a look at the header file, the man page or even the sd-bus sources.

Implementing a Service, in C, with sd-bus

Of course, just calling a single method is a rather simplistic example. Let's have a look on how to write a bus service. We'll write a small calculator service, that exposes a single object, which implements an interface that exposes two methods: one to multiply two 64bit signed integers, and one to divide one 64bit signed integer by another.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <systemd/sd-bus.h>

static int method_multiply(sd_bus_message *m, void *userdata, sd_bus_error *ret_error) {
        int64_t x, y;
        int r;

        /* Read the parameters */
        r = sd_bus_message_read(m, "xx", &x, &y);
        if (r < 0) {
                fprintf(stderr, "Failed to parse parameters: %s\n", strerror(-r));
                return r;
        }

        /* Reply with the response */
        return sd_bus_reply_method_return(m, "x", x * y);
}

static int method_divide(sd_bus_message *m, void *userdata, sd_bus_error *ret_error) {
        int64_t x, y;
        int r;

        /* Read the parameters */
        r = sd_bus_message_read(m, "xx", &x, &y);
        if (r < 0) {
                fprintf(stderr, "Failed to parse parameters: %s\n", strerror(-r));
                return r;
        }

        /* Return an error on division by zero */
        if (y == 0) {
                sd_bus_error_set_const(ret_error, "net.poettering.DivisionByZero", "Sorry, can't allow division by zero.");
                return -EINVAL;
        }

        return sd_bus_reply_method_return(m, "x", x / y);
}

/* The vtable of our little object, implements the net.poettering.Calculator interface */
static const sd_bus_vtable calculator_vtable[] = {
        SD_BUS_VTABLE_START(0),
        SD_BUS_METHOD("Multiply", "xx", "x", method_multiply, SD_BUS_VTABLE_UNPRIVILEGED),
        SD_BUS_METHOD("Divide",   "xx", "x", method_divide,   SD_BUS_VTABLE_UNPRIVILEGED),
        SD_BUS_VTABLE_END
};

int main(int argc, char *argv[]) {
        sd_bus_slot *slot = NULL;
        sd_bus *bus = NULL;
        int r;

        /* Connect to the user bus this time */
        r = sd_bus_open_user(&bus);
        if (r < 0) {
                fprintf(stderr, "Failed to connect to system bus: %s\n", strerror(-r));
                goto finish;
        }

        /* Install the object */
        r = sd_bus_add_object_vtable(bus,
                                     &slot,
                                     "/net/poettering/Calculator",  /* object path */
                                     "net.poettering.Calculator",   /* interface name */
                                     calculator_vtable,
                                     NULL);
        if (r < 0) {
                fprintf(stderr, "Failed to issue method call: %s\n", strerror(-r));
                goto finish;
        }

        /* Take a well-known service name so that clients can find us */
        r = sd_bus_request_name(bus, "net.poettering.Calculator", 0);
        if (r < 0) {
                fprintf(stderr, "Failed to acquire service name: %s\n", strerror(-r));
                goto finish;
        }

        for (;;) {
                /* Process requests */
                r = sd_bus_process(bus, NULL);
                if (r < 0) {
                        fprintf(stderr, "Failed to process bus: %s\n", strerror(-r));
                        goto finish;
                }
                if (r > 0) /* we processed a request, try to process another one, right-away */
                        continue;

                /* Wait for the next request to process */
                r = sd_bus_wait(bus, (uint64_t) -1);
                if (r < 0) {
                        fprintf(stderr, "Failed to wait on bus: %s\n", strerror(-r));
                        goto finish;
                }
        }

finish:
        sd_bus_slot_unref(slot);
        sd_bus_unref(bus);

        return r < 0 ? EXIT_FAILURE : EXIT_SUCCESS;
}

Save this example as bus-service.c, then build it with:

$ gcc bus-service.c -o bus-service `pkg-config --cflags --libs libsystemd`

Now, let's run it:

$ ./bus-service

In another terminal, let's try to talk to it. Note that this service is now on the user bus, not on the system bus as before. We do this for simplicity reasons: on the system bus access to services is tightly controlled so unprivileged clients cannot request privileged operations. On the user bus however things are simpler: as only processes of the user owning the bus can connect no further policy enforcement will complicate this example. Because the service is on the user bus, we have to pass the --user switch on the busctl command line. Let's start with looking at the service's object tree.

$ busctl --user tree net.poettering.Calculator
└─/net/poettering/Calculator

As we can see, there's only a single object on the service, which is not surprising, given that our code above only registered one. Let's see the interfaces and the members this object exposes:

$ busctl --user introspect net.poettering.Calculator /net/poettering/Calculator
NAME                                TYPE      SIGNATURE RESULT/VALUE FLAGS
net.poettering.Calculator           interface -         -            -
.Divide                             method    xx        x            -
.Multiply                           method    xx        x            -
org.freedesktop.DBus.Introspectable interface -         -            -
.Introspect                         method    -         s            -
org.freedesktop.DBus.Peer           interface -         -            -
.GetMachineId                       method    -         s            -
.Ping                               method    -         -            -
org.freedesktop.DBus.Properties     interface -         -            -
.Get                                method    ss        v            -
.GetAll                             method    s         a{sv}        -
.Set                                method    ssv       -            -
.PropertiesChanged                  signal    sa{sv}as  -            -

The sd-bus library automatically added a couple of generic interfaces, as mentioned above. But the first interface we see is actually the one we added! It shows our two methods, and both take "xx" (two 64bit signed integers) as input parameters, and return one "x". Great! But does it work?

$ busctl --user call net.poettering.Calculator /net/poettering/Calculator net.poettering.Calculator Multiply xx 5 7
x 35

Woohoo! We passed the two integers 5 and 7, and the service actually multiplied them for us and returned a single integer 35! Let's try the other method:

$ busctl --user call net.poettering.Calculator /net/poettering/Calculator net.poettering.Calculator Divide xx 99 17
x 5

Oh, wow! It can even do integer division! Fantastic! But let's trick it into dividing by zero:

$ busctl --user call net.poettering.Calculator /net/poettering/Calculator net.poettering.Calculator Divide xx 43 0
Sorry, can't allow division by zero.

Nice! It detected this nicely and returned a clean error about it. If you look in the source code example above you'll see how precisely we generated the error.

And that's really all I have for today. Of course, the examples I showed are short, and I don't get into detail here on what precisely each line does. However, this is supposed to be a short introduction into D-Bus and sd-bus, and it's already way too long for that …

I hope this blog story was useful to you. If you are interested in using sd-bus for your own programs, I hope this gets you started. If you have further questions, check the (incomplete) man pages, and inquire us on IRC or the systemd mailing list. If you need more examples, have a look at the systemd source tree, all of systemd's many bus services use sd-bus extensively.


Revisiting How We Put Together Linux Systems

In a previous blog story I discussed Factory Reset, Stateless Systems, Reproducible Systems & Verifiable Systems, I now want to take the opportunity to explain a bit where we want to take this with systemd in the longer run, and what we want to build out of it. This is going to be a longer story, so better grab a cold bottle of Club Mate before you start reading.

Traditional Linux distributions are built around packaging systems like RPM or dpkg, and an organization model where upstream developers and downstream packagers are relatively clearly separated: an upstream developer writes code, and puts it somewhere online, in a tarball. A packager than grabs it and turns it into RPMs/DEBs. The user then grabs these RPMs/DEBs and installs them locally on the system. For a variety of uses this is a fantastic scheme: users have a large selection of readily packaged software available, in mostly uniform packaging, from a single source they can trust. In this scheme the distribution vets all software it packages, and as long as the user trusts the distribution all should be good. The distribution takes the responsibility of ensuring the software is not malicious, of timely fixing security problems and helping the user if something is wrong.

Upstream Projects

However, this scheme also has a number of problems, and doesn't fit many use-cases of our software particularly well. Let's have a look at the problems of this scheme for many upstreams:

  • Upstream software vendors are fully dependent on downstream distributions to package their stuff. It's the downstream distribution that decides on schedules, packaging details, and how to handle support. Often upstream vendors want much faster release cycles then the downstream distributions follow.

  • Realistic testing is extremely unreliable and next to impossible. Since the end-user can run a variety of different package versions together, and expects the software he runs to just work on any combination, the test matrix explodes. If upstream tests its version on distribution X release Y, then there's no guarantee that that's the precise combination of packages that the end user will eventually run. In fact, it is very unlikely that the end user will, since most distributions probably updated a number of libraries the package relies on by the time the package ends up being made available to the user. The fact that each package can be individually updated by the user, and each user can combine library versions, plug-ins and executables relatively freely, results in a high risk of something going wrong.

  • Since there are so many different distributions in so many different versions around, if upstream tries to build and test software for them it needs to do so for a large number of distributions, which is a massive effort.

  • The distributions are actually quite different in many ways. In fact, they are different in a lot of the most basic functionality. For example, the path where to put x86-64 libraries is different on Fedora and Debian derived systems..

  • Developing software for a number of distributions and versions is hard: if you want to do it, you need to actually install them, each one of them, manually, and then build your software for each.

  • Since most downstream distributions have strict licensing and trademark requirements (and rightly so), any kind of closed source software (or otherwise non-free) does not fit into this scheme at all.

This all together makes it really hard for many upstreams to work nicely with the current way how Linux works. Often they try to improve the situation for them, for example by bundling libraries, to make their test and build matrices smaller.

System Vendors

The toolbox approach of classic Linux distributions is fantastic for people who want to put together their individual system, nicely adjusted to exactly what they need. However, this is not really how many of today's Linux systems are built, installed or updated. If you build any kind of embedded device, a server system, or even user systems, you frequently do your work based on complete system images, that are linearly versioned. You build these images somewhere, and then you replicate them atomically to a larger number of systems. On these systems, you don't install or remove packages, you get a defined set of files, and besides installing or updating the system there are no ways how to change the set of tools you get.

The current Linux distributions are not particularly good at providing for this major use-case of Linux. Their strict focus on individual packages as well as package managers as end-user install and update tool is incompatible with what many system vendors want.

Users

The classic Linux distribution scheme is frequently not what end users want, either. Many users are used to app markets like Android, Windows or iOS/Mac have. Markets are a platform that doesn't package, build or maintain software like distributions do, but simply allows users to quickly find and download the software they need, with the app vendor responsible for keeping the app updated, secured, and all that on the vendor's release cycle. Users tend to be impatient. They want their software quickly, and the fine distinction between trusting a single distribution or a myriad of app developers individually is usually not important for them. The companies behind the marketplaces usually try to improve this trust problem by providing sand-boxing technologies: as a replacement for the distribution that audits, vets, builds and packages the software and thus allows users to trust it to a certain level, these vendors try to find technical solutions to ensure that the software they offer for download can't be malicious.

Existing Approaches To Fix These Problems

Now, all the issues pointed out above are not new, and there are sometimes quite successful attempts to do something about it. Ubuntu Apps, Docker, Software Collections, ChromeOS, CoreOS all fix part of this problem set, usually with a strict focus on one facet of Linux systems. For example, Ubuntu Apps focus strictly on end user (desktop) applications, and don't care about how we built/update/install the OS itself, or containers. Docker OTOH focuses on containers only, and doesn't care about end-user apps. Software Collections tries to focus on the development environments. ChromeOS focuses on the OS itself, but only for end-user devices. CoreOS also focuses on the OS, but only for server systems.

The approaches they find are usually good at specific things, and use a variety of different technologies, on different layers. However, none of these projects tried to fix this problems in a generic way, for all uses, right in the core components of the OS itself.

Linux has come to tremendous successes because its kernel is so generic: you can build supercomputers and tiny embedded devices out of it. It's time we come up with a basic, reusable scheme how to solve the problem set described above, that is equally generic.

What We Want

The systemd cabal (Kay Sievers, Harald Hoyer, Daniel Mack, Tom Gundersen, David Herrmann, and yours truly) recently met in Berlin about all these things, and tried to come up with a scheme that is somewhat simple, but tries to solve the issues generically, for all use-cases, as part of the systemd project. All that in a way that is somewhat compatible with the current scheme of distributions, to allow a slow, gradual adoption. Also, and that's something one cannot stress enough: the toolbox scheme of classic Linux distributions is actually a good one, and for many cases the right one. However, we need to make sure we make distributions relevant again for all use-cases, not just those of highly individualized systems.

Anyway, so let's summarize what we are trying to do:

  • We want an efficient way that allows vendors to package their software (regardless if just an app, or the whole OS) directly for the end user, and know the precise combination of libraries and packages it will operate with.

  • We want to allow end users and administrators to install these packages on their systems, regardless which distribution they have installed on it.

  • We want a unified solution that ultimately can cover updates for full systems, OS containers, end user apps, programming ABIs, and more. These updates shall be double-buffered, (at least). This is an absolute necessity if we want to prepare the ground for operating systems that manage themselves, that can update safely without administrator involvement.

  • We want our images to be trustable (i.e. signed). In fact we want a fully trustable OS, with images that can be verified by a full trust chain from the firmware (EFI SecureBoot!), through the boot loader, through the kernel, and initrd. Cryptographically secure verification of the code we execute is relevant on the desktop (like ChromeOS does), but also for apps, for embedded devices and even on servers (in a post-Snowden world, in particular).

What We Propose

So much about the set of problems, and what we are trying to do. So, now, let's discuss the technical bits we came up with:

The scheme we propose is built around the variety of concepts of btrfs and Linux file system name-spacing. btrfs at this point already has a large number of features that fit neatly in our concept, and the maintainers are busy working on a couple of others we want to eventually make use of.

As first part of our proposal we make heavy use of btrfs sub-volumes and introduce a clear naming scheme for them. We name snapshots like this:

  • usr:<vendorid>:<architecture>:<version> -- This refers to a full vendor operating system tree. It's basically a /usr tree (and no other directories), in a specific version, with everything you need to boot it up inside it. The <vendorid> field is replaced by some vendor identifier, maybe a scheme like org.fedoraproject.FedoraWorkstation. The <architecture> field specifies a CPU architecture the OS is designed for, for example x86-64. The <version> field specifies a specific OS version, for example 23.4. An example sub-volume name could hence look like this: usr:org.fedoraproject.FedoraWorkstation:x86_64:23.4

  • root:<name>:<vendorid>:<architecture> -- This refers to an instance of an operating system. Its basically a root directory, containing primarily /etc and /var (but possibly more). Sub-volumes of this type do not contain a populated /usr tree though. The <name> field refers to some instance name (maybe the host name of the instance). The other fields are defined as above. An example sub-volume name is root:revolution:org.fedoraproject.FedoraWorkstation:x86_64.

  • runtime:<vendorid>:<architecture>:<version> -- This refers to a vendor runtime. A runtime here is supposed to be a set of libraries and other resources that are needed to run apps (for the concept of apps see below), all in a /usr tree. In this regard this is very similar to the usr sub-volumes explained above, however, while a usr sub-volume is a full OS and contains everything necessary to boot, a runtime is really only a set of libraries. You cannot boot it, but you can run apps with it. An example sub-volume name is: runtime:org.gnome.GNOME3_20:x86_64:3.20.1

  • framework:<vendorid>:<architecture>:<version> -- This is very similar to a vendor runtime, as described above, it contains just a /usr tree, but goes one step further: it additionally contains all development headers, compilers and build tools, that allow developing against a specific runtime. For each runtime there should be a framework. When you develop against a specific framework in a specific architecture, then the resulting app will be compatible with the runtime of the same vendor ID and architecture. Example: framework:org.gnome.GNOME3_20:x86_64:3.20.1

  • app:<vendorid>:<runtime>:<architecture>:<version> -- This encapsulates an application bundle. It contains a tree that at runtime is mounted to /opt/<vendorid>, and contains all the application's resources. The <vendorid> could be a string like org.libreoffice.LibreOffice, the <runtime> refers to one the vendor id of one specific runtime the application is built for, for example org.gnome.GNOME3_20:3.20.1. The <architecture> and <version> refer to the architecture the application is built for, and of course its version. Example: app:org.libreoffice.LibreOffice:GNOME3_20:x86_64:133

  • home:<user>:<uid>:<gid> -- This sub-volume shall refer to the home directory of the specific user. The <user> field contains the user name, the <uid> and <gid> fields the numeric Unix UIDs and GIDs of the user. The idea here is that in the long run the list of sub-volumes is sufficient as a user database (but see below). Example: home:lennart:1000:1000.

btrfs partitions that adhere to this naming scheme should be clearly identifiable. It is our intention to introduce a new GPT partition type ID for this.

How To Use It

After we introduced this naming scheme let's see what we can build of this:

  • When booting up a system we mount the root directory from one of the root sub-volumes, and then mount /usr from a matching usr sub-volume. Matching here means it carries the same <vendor-id> and <architecture>. Of course, by default we should pick the matching usr sub-volume with the newest version by default.

  • When we boot up an OS container, we do exactly the same as the when we boot up a regular system: we simply combine a usr sub-volume with a root sub-volume.

  • When we enumerate the system's users we simply go through the list of home snapshots.

  • When a user authenticates and logs in we mount his home directory from his snapshot.

  • When an app is run, we set up a new file system name-space, mount the app sub-volume to /opt/<vendorid>/, and the appropriate runtime sub-volume the app picked to /usr, as well as the user's /home/$USER to its place.

  • When a developer wants to develop against a specific runtime he installs the right framework, and then temporarily transitions into a name space where /usris mounted from the framework sub-volume, and /home/$USER from his own home directory. In this name space he then runs his build commands. He can build in multiple name spaces at the same time, if he intends to builds software for multiple runtimes or architectures at the same time.

Instantiating a new system or OS container (which is exactly the same in this scheme) just consists of creating a new appropriately named root sub-volume. Completely naturally you can share one vendor OS copy in one specific version with a multitude of container instances.

Everything is double-buffered (or actually, n-fold-buffered), because usr, runtime, framework, app sub-volumes can exist in multiple versions. Of course, by default the execution logic should always pick the newest release of each sub-volume, but it is up to the user keep multiple versions around, and possibly execute older versions, if he desires to do so. In fact, like on ChromeOS this could even be handled automatically: if a system fails to boot with a newer snapshot, the boot loader can automatically revert back to an older version of the OS.

An Example

Note that in result this allows installing not only multiple end-user applications into the same btrfs volume, but also multiple operating systems, multiple system instances, multiple runtimes, multiple frameworks. Or to spell this out in an example:

Let's say Fedora, Mageia and ArchLinux all implement this scheme, and provide ready-made end-user images. Also, the GNOME, KDE, SDL projects all define a runtime+framework to develop against. Finally, both LibreOffice and Firefox provide their stuff according to this scheme. You can now trivially install of these into the same btrfs volume:

  • usr:org.fedoraproject.WorkStation:x86_64:24.7
  • usr:org.fedoraproject.WorkStation:x86_64:24.8
  • usr:org.fedoraproject.WorkStation:x86_64:24.9
  • usr:org.fedoraproject.WorkStation:x86_64:25beta
  • usr:org.mageia.Client:i386:39.3
  • usr:org.mageia.Client:i386:39.4
  • usr:org.mageia.Client:i386:39.6
  • usr:org.archlinux.Desktop:x86_64:302.7.8
  • usr:org.archlinux.Desktop:x86_64:302.7.9
  • usr:org.archlinux.Desktop:x86_64:302.7.10
  • root:revolution:org.fedoraproject.WorkStation:x86_64
  • root:testmachine:org.fedoraproject.WorkStation:x86_64
  • root:foo:org.mageia.Client:i386
  • root:bar:org.archlinux.Desktop:x86_64
  • runtime:org.gnome.GNOME3_20:x86_64:3.20.1
  • runtime:org.gnome.GNOME3_20:x86_64:3.20.4
  • runtime:org.gnome.GNOME3_20:x86_64:3.20.5
  • runtime:org.gnome.GNOME3_22:x86_64:3.22.0
  • runtime:org.kde.KDE5_6:x86_64:5.6.0
  • framework:org.gnome.GNOME3_22:x86_64:3.22.0
  • framework:org.kde.KDE5_6:x86_64:5.6.0
  • app:org.libreoffice.LibreOffice:GNOME3_20:x86_64:133
  • app:org.libreoffice.LibreOffice:GNOME3_22:x86_64:166
  • app:org.mozilla.Firefox:GNOME3_20:x86_64:39
  • app:org.mozilla.Firefox:GNOME3_20:x86_64:40
  • home:lennart:1000:1000
  • home:hrundivbakshi:1001:1001

In the example above, we have three vendor operating systems installed. All of them in three versions, and one even in a beta version. We have four system instances around. Two of them of Fedora, maybe one of them we usually boot from, the other we run for very specific purposes in an OS container. We also have the runtimes for two GNOME releases in multiple versions, plus one for KDE. Then, we have the development trees for one version of KDE and GNOME around, as well as two apps, that make use of two releases of the GNOME runtime. Finally, we have the home directories of two users.

Now, with the name-spacing concepts we introduced above, we can actually relatively freely mix and match apps and OSes, or develop against specific frameworks in specific versions on any operating system. It doesn't matter if you booted your ArchLinux instance, or your Fedora one, you can execute both LibreOffice and Firefox just fine, because at execution time they get matched up with the right runtime, and all of them are available from all the operating systems you installed. You get the precise runtime that the upstream vendor of Firefox/LibreOffice did their testing with. It doesn't matter anymore which distribution you run, and which distribution the vendor prefers.

Also, given that the user database is actually encoded in the sub-volume list, it doesn't matter which system you boot, the distribution should be able to find your local users automatically, without any configuration in /etc/passwd.

Building Blocks

With this naming scheme plus the way how we can combine them on execution we already came quite far, but how do we actually get these sub-volumes onto the final machines, and how do we update them? Well, btrfs has a feature they call "send-and-receive". It basically allows you to "diff" two file system versions, and generate a binary delta. You can generate these deltas on a developer's machine and then push them into the user's system, and he'll get the exact same sub-volume too. This is how we envision installation and updating of operating systems, applications, runtimes, frameworks. At installation time, we simply deserialize an initial send-and-receive delta into our btrfs volume, and later, when a new version is released we just add in the few bits that are new, by dropping in another send-and-receive delta under a new sub-volume name. And we do it exactly the same for the OS itself, for a runtime, a framework or an app. There's no technical distinction anymore. The underlying operation for installing apps, runtime, frameworks, vendor OSes, as well as the operation for updating them is done the exact same way for all.

Of course, keeping multiple full /usr trees around sounds like an awful lot of waste, after all they will contain a lot of very similar data, since a lot of resources are shared between distributions, frameworks and runtimes. However, thankfully btrfs actually is able to de-duplicate this for us. If we add in a new app snapshot, this simply adds in the new files that changed. Moreover different runtimes and operating systems might actually end up sharing the same tree.

Even though the example above focuses primarily on the end-user, desktop side of things, the concept is also extremely powerful in server scenarios. For example, it is easy to build your own usr trees and deliver them to your hosts using this scheme. The usr sub-volumes are supposed to be something that administrators can put together. After deserializing them into a couple of hosts, you can trivially instantiate them as OS containers there, simply by adding a new root sub-volume for each instance, referencing the usr tree you just put together. Instantiating OS containers hence becomes as easy as creating a new btrfs sub-volume. And you can still update the images nicely, get fully double-buffered updates and everything.

And of course, this scheme also applies great to embedded use-cases. Regardless if you build a TV, an IVI system or a phone: you can put together you OS versions as usr trees, and then use btrfs-send-and-receive facilities to deliver them to the systems, and update them there.

Many people when they hear the word "btrfs" instantly reply with "is it ready yet?". Thankfully, most of the functionality we really need here is strictly read-only. With the exception of the home sub-volumes (see below) all snapshots are strictly read-only, and are delivered as immutable vendor trees onto the devices. They never are changed. Even if btrfs might still be immature, for this kind of read-only logic it should be more than good enough.

Note that this scheme also enables doing fat systems: for example, an installer image could include a Fedora version compiled for x86-64, one for i386, one for ARM, all in the same btrfs volume. Due to btrfs' de-duplication they will share as much as possible, and when the image is booted up the right sub-volume is automatically picked. Something similar of course applies to the apps too!

This also allows us to implement something that we like to call Operating-System-As-A-Virus. Installing a new system is little more than:

  • Creating a new GPT partition table
  • Adding an EFI System Partition (FAT) to it
  • Adding a new btrfs volume to it
  • Deserializing a single usr sub-volume into the btrfs volume
  • Installing a boot loader into the EFI System Partition
  • Rebooting

Now, since the only real vendor data you need is the usr sub-volume, you can trivially duplicate this onto any block device you want. Let's say you are a happy Fedora user, and you want to provide a friend with his own installation of this awesome system, all on a USB stick. All you have to do for this is do the steps above, using your installed usr tree as source to copy. And there you go! And you don't have to be afraid that any of your personal data is copied too, as the usr sub-volume is the exact version your vendor provided you with. Or with other words: there's no distinction anymore between installer images and installed systems. It's all the same. Installation becomes replication, not more. Live-CDs and installed systems can be fully identical.

Note that in this design apps are actually developed against a single, very specific runtime, that contains all libraries it can link against (including a specific glibc version!). Any library that is not included in the runtime the developer picked must be included in the app itself. This is similar how apps on Android declare one very specific Android version they are developed against. This greatly simplifies application installation, as there's no dependency hell: each app pulls in one runtime, and the app is actually free to pick which one, as you can have multiple installed, though only one is used by each app.

Also note that operating systems built this way will never see "half-updated" systems, as it is common when a system is updated using RPM/dpkg. When updating the system the code will either run the old or the new version, but it will never see part of the old files and part of the new files. This is the same for apps, runtimes, and frameworks, too.

Where We Are Now

We are currently working on a lot of the groundwork necessary for this. This scheme relies on the ability to monopolize the vendor OS resources in /usr, which is the key of what I described in Factory Reset, Stateless Systems, Reproducible Systems & Verifiable Systems a few weeks back. Then, of course, for the full desktop app concept we need a strong sandbox, that does more than just hiding files from the file system view. After all with an app concept like the above the primary interfacing between the executed desktop apps and the rest of the system is via IPC (which is why we work on kdbus and teach it all kinds of sand-boxing features), and the kernel itself. Harald Hoyer has started working on generating the btrfs send-and-receive images based on Fedora.

Getting to the full scheme will take a while. Currently we have many of the building blocks ready, but some major items are missing. For example, we push quite a few problems into btrfs, that other solutions try to solve in user space. One of them is actually signing/verification of images. The btrfs maintainers are working on adding this to the code base, but currently nothing exists. This functionality is essential though to come to a fully verified system where a trust chain exists all the way from the firmware to the apps. Also, to make the home sub-volume scheme fully workable we actually need encrypted sub-volumes, so that the sub-volume's pass-phrase can be used for authenticating users in PAM. This doesn't exist either.

Working towards this scheme is a gradual process. Many of the steps we require for this are useful outside of the grand scheme though, which means we can slowly work towards the goal, and our users can already take benefit of what we are working on as we go.

Also, and most importantly, this is not really a departure from traditional operating systems:

Each app, each OS and each app sees a traditional Unix hierarchy with /usr, /home, /opt, /var, /etc. It executes in an environment that is pretty much identical to how it would be run on traditional systems.

There's no need to fully move to a system that uses only btrfs and follows strictly this sub-volume scheme. For example, we intend to provide implicit support for systems that are installed on ext4 or xfs, or that are put together with traditional packaging tools such as RPM or dpkg: if the the user tries to install a runtime/app/framework/os image on a system that doesn't use btrfs so far, it can just create a loop-back btrfs image in /var, and push the data into that. Even us developers will run our stuff like this for a while, after all this new scheme is not particularly useful for highly individualized systems, and we developers usually tend to run systems like that.

Also note that this in no way a departure from packaging systems like RPM or DEB. Even if the new scheme we propose is used for installing and updating a specific system, it is RPM/DEB that is used to put together the vendor OS tree initially. Hence, even in this scheme RPM/DEB are highly relevant, though not strictly as an end-user tool anymore, but as a build tool.

So Let's Summarize Again What We Propose

  • We want a unified scheme, how we can install and update OS images, user apps, runtimes and frameworks.

  • We want a unified scheme how you can relatively freely mix OS images, apps, runtimes and frameworks on the same system.

  • We want a fully trusted system, where cryptographic verification of all executed code can be done, all the way to the firmware, as standard feature of the system.

  • We want to allow app vendors to write their programs against very specific frameworks, under the knowledge that they will end up being executed with the exact same set of libraries chosen.

  • We want to allow parallel installation of multiple OSes and versions of them, multiple runtimes in multiple versions, as well as multiple frameworks in multiple versions. And of course, multiple apps in multiple versions.

  • We want everything double buffered (or actually n-fold buffered), to ensure we can reliably update/rollback versions, in particular to safely do automatic updates.

  • We want a system where updating a runtime, OS, framework, or OS container is as simple as adding in a new snapshot and restarting the runtime/OS/framework/OS container.

  • We want a system where we can easily instantiate a number of OS instances from a single vendor tree, with zero difference for doing this on order to be able to boot it on bare metal/VM or as a container.

  • We want to enable Linux to have an open scheme that people can use to build app markets and similar schemes, not restricted to a specific vendor.

Final Words

I'll be talking about this at LinuxCon Europe in October. I originally intended to discuss this at the Linux Plumbers Conference (which I assumed was the right forum for this kind of major plumbing level improvement), and at linux.conf.au, but there was no interest in my session submissions there...

Of course this is all work in progress. These are our current ideas we are working towards. As we progress we will likely change a number of things. For example, the precise naming of the sub-volumes might look very different in the end.

Of course, we are developers of the systemd project. Implementing this scheme is not just a job for the systemd developers. This is a reinvention how distributions work, and hence needs great support from the distributions. We really hope we can trigger some interest by publishing this proposal now, to get the distributions on board. This after all is explicitly not supposed to be a solution for one specific project and one specific vendor product, we care about making this open, and solving it for the generic case, without cutting corners.

If you have any questions about this, you know how you can reach us (IRC, mail, G+, ...).

The future is going to be awesome!


FUDCON + GNOME.Asia Beijing 2014

Thanks to the funding from FUDCON I had the chance to attend and keynote at the combined FUDCON Beijing 2014 and GNOME.Asia 2014 conference in Beijing, China.

My talk was about systemd's present and future, what we achieved and where we are going. In my talk I tried to explain a bit where we are coming from, and how we changed focus from being purely an init system, to more being a set of basic building blocks to build an OS from. Most of the talk I talked about where we still intend to take systemd, which areas we believe should be covered by systemd, and of course, also the always difficult question, on where to draw the line and what clearly is outside of the focus of systemd. The slides of my talk you find online. (No video recording I am aware of, sorry.)

The combined conferences were a lot of fun, and as usual, the best discussions I had in the hallway track, discussing Linux and systemd.

A number of pictures of the conference are now online. Enjoy!

After the conference I stayed for a few more days in Beijing, doing a bit of sightseeing. What a fantastic city! The food was amazing, we tried all kinds of fantastic stuff, from Peking duck, to Bullfrog Sechuan style. Yummy. And one of those days I am sure I will find the time to actually sort my photos and put them online, too.

I am really looking forward to the next FUDCON/GNOME.Asia!

© Lennart Poettering. Built using Pelican. Theme by Giulio Fidente on github. .